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ON THE FITTING OF PEARSON CURVES TO SUMS OF

INDEPENDENT RANDOM VARIABLES

By

Thomas Sellke

Introduction and Summary.

In this report, we attempt to answer the following questions.

1. Is the sum of independent beta (Pearson Type I) random

variables distributed as a beta random variable?

2. How well is the distribution of a sum of independent betas

approximated by a beta distribution?

3. If two or more independent random variables are best fitted

by one type of Pearson curve, is their sum best fitted by a Pearson

curve of the same type?

Section 1 of this paper shows that the answer to the first question

is "no". However, the calculations and computer simulations described

in section 2 show that the sum of independent beta random variables often

has a distribution which is close to a beta distribution, so that the

answer to the second question is often "very well".

Section 3 shows that the answer to the third question depends on

the Pearson curve type of the random variables and on whether they are

identically distributed. Theorem i of this section shows that the sum

of independent, identically distributed random variables of Pearson Type

I, II, III or VII is best fitted by a Pearson curve of the same type.

This is "almost" true for the other Pearson types in a certain sense.

When the independent random variables to be added are not identically

distributed, Pearson curve type is not preserved to this extent.
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However, Theorem 2 and Theorem 3 can be used to determine the possible

Pearson curve types of the sum given the Pearson curve type of the

summands. There is some interest in the question of whether the sum of

independent chi random variables is best fitted by a Pearson Type I

distribution. (A single chi random variable is best fitted by a Pearson

Type I.) The report finishes by showing that Pearson curves of Types I,

III, IV, V, and VI can be best fitting for a sum of two independent chi

random variables.

1. Is the Sum of Independent Beta (Pearson Type I) Random Variables

Distributed as a Beta Random Variable?

It is easy to exhibit counterexamples, such as a sum of two inde-

pEndent U[O,11 random variables. More generally, consider m indepen-

dent betas with intervals of support [O,a 1 , [O,a2],...,[Oam]. It seems

to be the case that the density of the sum of these betas will not be

infinitely differentiable at points which can be written as the sum of

some subset of the ak's. Since the density of a beta is infinitely

differentiable in the interior of its interval of support, this would

imply that a sum of independent betas never has a beta distribution. A

rigorous proof of this claim has not been worked out, however.

2. How Well is the Distribution of a Sum of Independent Betas Approxi-

mated by a Beta Distribution?

Percentage points were found for the Pearson curves whose first four

moments agreed with the first four moments of various test distributions.

These values are compared with the true percentage points or with percen-

tage points obtained from computer simulation. The results are found in

Tables 1-4. All the Pearson curves used were beta distributions.
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Let U1, U2, and U3 be independent U[O,1I random variables.

Let 82,2 and 82,2 be Beta(2,2) random variables independent of each

other and of the Ui's. Table 1 gives percentage points, the Pearson

curve approximations to these percentage points, and the true per-

centile values corresponding to the Pearson curve values for four

"- symmetric test distributions. Note that the Pearson curve approxi-

mations do worst for U + U whose tent-shaped density does not

look much like any beta density. The Pearson curves do about equally

well for the other three test distributions.

Table 2 gives true, computer simulation, and Pearson curve per-

centage points for a sum of two 0(1,3) random variables. The

computer simulation values were obtained by generating two independent

random numbers uniformly distributed on [0,1], doing a transformation

to obtain independent random numbers with a 0(1,3) distribution,

recording the sum, and iterating this procedure 106 times. The other

computer simulations were done in the same way, except that 5 and 10

independent 0(1,3) random numbers were added in each of the 106

iterations. The table shows that the computer simulation percentage

points are in very good agreement with the true percentage points.

The Pearson curve values are not as good, especially in the lower

tail.

Tables 3 and 4 give computer simulation and Pearson curve percen-

tage points for sums of 5 and 10 i.i.d. B l,3) random variables, res-

pectively. The true percentage points were not found because the

calculations would have been too messy, but Table 2 shows that the

computer simulation values should be quite close to the true ones.

3
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* Table 4 also includes percentage points obtained from the Edgeworth

expansion with Edgeworth correction terms of orders n , n,

and n - 3 2 . The different methods show very good agreement in both

tables.

These results give an indication of how well the distribution

..f a sum of i.i.d. S(p,q) random variables is approximated by a

beta distribution when p and q are small positive integers.

The Pearson curve approximation for a sum of two such betas gives

only rough agreement with the true percentage points. One explana-

tion of this behavior is that the density for a sum of two such

- betas exhibits a lack of "smoothness" at 1. For example, the "tent-

function" density of U1 + U2 does not have a first derivative at

1, while the sum of two $(1,3) random variables does not have a

third derivative at 1. Thus, it is not surprising that such a

density is not well approximated by a beta density, which is necessarily

infinitely differentiable in its interval of support. As the number

of ild betas which are added together increases, the smoothing effect

of convolution on the density and the approach of the distribution

toward the normal distribution makes the approximation by a beta

better. Changing from integer values for p and q to real numbers

of similar size should not seriously affect the quality of the approxi-

mations.

Moderate deviations from the identically distributed case should

not make much difference either, although the next section will show

that the Pearson curve which best fits a sum of independent, non-

identically distributed betas is not always itself a beta. If p and
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q are both very small positive numbers, it could be necessary to add

a large number of these betas together before the sum distribution is

smooth enough to be close to a beta. To take an extreme example,

consider p - q - 10- 6 . Such a O(p,q) puts almost all of its mass

very close to 0 or to 1. The distribution of a sum of k such

betas would concentrate its mass close to the integers 0,1,2,...,k

unless k were quite large.

5
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Table 1

True percentage points, Pearson curve approximations to these
-': percentage points, and true percentiles for the Pearson curve vaues

for four sum distributions.
U1 + U2  U1 +U2 +U 3  U. +8 2 2  2,2 + 02,.2

Kurtosis 2.4 2.6 2.4107 2.5714

Range [0,2] [0,3] [0,2] [0,2]

True 0.25% point .0707 .2466 .1390 .2112

Pearson value .0348 .2318 .1331 .1990

True % for Pearson .06% .21% .22% .20%

True 0.5% point .1000 .3107 .1763 .2536

Pearson value .0789 .3077 .1737 .2512

True 2 for Pearson .31% .49% .48% .48%

True 1.0% point .1414 .3915 .2242 .3052

Pearson value .1342 .3966 .2241 .3056

True % for Pearson .90% 1.04% 1.00% 1.00%

True 2.5% point .2236 .5314 .3092 .3918

Pearson value .2305 .5402 .3110 .3944

True % for Pearson 2.66% 2.63% 2.54% 2.56%

True 5.0% point .3162 .6694 .3966 .4760

Pearson value .3277 .6752 .3986 .4785

True % for Pearson 5.37% 5.13 5.07% 5.09%

True 10.0% point .4472 .8434 .5123 .5824

Pearson value .4554 .8428 .5133 .5832

True % for Pearson 10.37% 9.98% 10.05% 10.04%

25.0% .7071 1.1471 .7338 .7761

Pearson value .7003 1.1452 .732 .775

True % for Pearson 24.52% 24.88% 24.90% 24.85%

6
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Table 2

True, computer simulation (106 rep.), and Pearson curve

percentage points for a sum of two 0(1,3) r.v. 's.

Computer Pearson True Percentiles of

Percent True Simulation Curve Pearson Curve Values

.25% 0.0240 0.0243 0.0071 .022%

.5% 0.0341 0.0343 0.0210 .19%

1.0% 0.0487 0.0492 0.0396 .67%

2.5% 0.0786 0.0790 0.0748 2.28%

5% 0.1139 0.1142 0.1137 4.98%

10% 0.1672 0.1676 0.1696 10.26%

25% 0.2884 0.2886 0.2909 25.34%

50% 0.4669 0.4667 0.4656 49.83%

75% 0.6766 0.6765 0.6743 74.78%

90% 0.8769 0.8770 0.8796 90.14%

95% 1.000 1.0001 1.0048 95.14%

97.5% 1.1091 1.1089 1.1122 97.55%

99% 1.2353 1.2358 1.2333 98.98%

99.5% 1.3187 1.3183 1.3123 99.47%

99.75% 1.3930 1.3910 1.3824 99.72%
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Table 3

Percentage points for a sum of 5 lid 0(1,3) random variables

Computer Pearson
Percent Simulation Curve

.25% 0.287 0.279

.5% 0.338 0.326

1.0% 0.396 0.395

2.5% 0.497 0.496

5% 0.588 0.592

10% 0.709 0.712

25% 0.938 0.938

50% 1.221 1.220

75% 1.531 1.531

90% 1.828 1.828

95% 2.010 2.012

97.5% 2.170 2.173

99% 2.358 2.362

99.5% 2.488 2.490

99.75% 2.610 2.609

a'
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* Table 4

Percentage points for a stum of 10 ild S(1,3) random variables.

Computer Pearson Edgeworth
Percent Simulation Curve Expansion

.25% 1.0112 1.0092 1.0157

.5% 1.1068 1.1070 1.1084

1.0% 1.2160 1.2172 1.2160

2.5% 1.3860 1.3881 1.3859

5% 1.5416 1.5434 1.5417

10% 1.7308 1.7319 1.7311

25% 2.0680 2.0683 2.0685

50% 2.4724 2.4710 2.4715

75% 2.9004 2.9006 2.9005

90% 3.3040 3.3060 3.3055

95% 3.5520 3.5555 3.5553

97.5% 3.7688 3.7752 3.7752

99% 4.0256 4.0337 4.0332

99.5% 4.2056 4.2112 4.2100

99.75% 4.3716 4.3764 4.3750

9



3. If Two or More Independent Random Variables are Best Fitted by

-' One Type of Pearson Curve, is Their Sum Best Fitted by a Pearson

Curve of the Same Type?

The answer to this question will depend on the type of Pearson

curve which best fits the summand random variables. However, before

the investigation of this question can begin, it will be necessary to

establish some notation and to make some background remarks concerning

the Pearson curve system.

Let X1 and X2 be independent random variables with finite

fourth moments. Let KI, K2 , K3, and K4 be the first four cumulants

of X1. Let L1, L2 , L3 , and L4  be the first four cumulants of X2.

The first four cumulants of X + X will be KI + L, K2 + L2 ,

K3 + , and K4 + L4 . Let / , /i, and 1 be the skewness1'",1a1

values for X1, X2, and Xl+X2  respectively. Let $2, 82, and 82

be the kurtosis values for XI, X2 , and XI+X 2 , respectively. Recall

that 10 and ' are defined by

K K4
33+-

K3/2 and 2

The other skewness and kurtosis values are defined analogously. The

symbols /ro' and 82 will be used as generic symbols for skewness

and kurtosis.

A Pearson curve is uniquely determined by its first four moments.

Thus, a natural way to fit a Pearson curve to a probability distribution

is to find the Pearson curve whose first four moments match those of

10
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the distribution. In this discussion,the "best fitting" Pearson curve

will be defined to be the one found in this way. However, other

fitting methods are sometimes used. For example, Pearson curves

are sometimes fitted to chi random variables so as to match the

first three moments subject to the constraint that 0 be the left

endpoint of the interval of support.

Up to location an : zale, t~e Pearson curve which best fits a

distribution is determine4 by the skewness 1  and the kurtosis
2

of the distribution. Since the type of a Pearson curve is location

and scale invariant, 1 and determine the type.

The following formulas, taken from Johnson and Kotz (1970), show

how to find Pearson curve type from and 2 DS2. Define cc 2

and K by

c - (482-381) (1082-1281-18)-I 2

.11

. 1 = IrV (8 2 +3)(108 2-128 1-18) -

c 2 = (28231l16)(1082128118)-1

1 2 -1
1 2 C (c 0c 2)

Type I: K < 0 , which is equivalent to 28 2- 3 8 1- 6 < 0

Type I: 8 0, 8 < 3
1 2

Type TII: 282-301-6 - 0

11
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Type IV: 0 < K < 1

TypeV: K =-i

Type VI: K > 1.

Type VII: 01 0, a2 > 3

The classification of ( 1 82 ) pairs implied by these formulas is

displayed graphically on the next two pages, which are taken from Rhind

(1909). The "limit for all frequency distributions" line has been

added to Rhind's version of Figure 1. The text of Rhind's paper

indicates that existence of this limiting line was not known in 1909.

The line labeled V in Figure 1 may look like it is not quite straight

because of sloppiness on Rhind's part, but this is not the case. This

curve is the solution to the cubic equation

*1 (2+3) 2 = 4(4a23$1) (2$23a16).

The curve is also shown on Figure 2, where it is more obvious that it

is not straight. The line labeled III is straight, however,

The kurtosis $ does not seem to be a convenient parameter for
2

the purposes of this discussion. For this reason, let us define Y',

y", and y by

y - , y" - a"-3 and Y -3
2 2 2

Thus, the Y parameters are related to the cumulants by

12
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K4  L4  , K4+L4

y K 2 - - Y . (K2+L2)2
2 2

One can think of this y parameter as being a normalized fourth cumu-

lant in the same way that AB1  is a normalized third cumulant.

The Pearson curve corresponding to a given distribution is of

course specified, up to location and scale, by the values of Ir

and y of the distribution. When one works in terms of 81 and y

instead of in terms of 81 and B2, Figure 1 is replaced by Figure 3.

* Let us subdivide the region in the (0Iy) plane which corres-

ponds to Type I distributions into the regions I-, I+, and 10.

(See Figure 4.) I is the part of the Type I region where y < 0,

+ 0I is the part of the Type I region where y > 0, and I is

the part of the Type I region where y - 0. These subregions have

no known significance with respect to the shapes of the Pearson curves

they contain. Their importance arises solely from the question to be

investigated.

If 8, 0, the Pearson curve type is determined by the sign

of y:

8 0, Y < 0 implies Type II.

i10, Y - 0 implies Type G (normal distribution)

81i=0, y > 0 implies Type VII.

If 8I > 0, the Pearson curve type is "almost" determined by

the ratio 
-

81
-- < 0 implies Type I-

, 15
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This diagram is the same as Figure 1, except that the vertical

axis is parameterized by y instead of .

Figure 3.

16



2 -3 -4 -5 -6 -7 -8 -9 1-0 1-1 1-2 1-3 1-4 1-5 1-6 1-7__18

-

-

Th0Gm darmtafom n (10)-hw hweTp I region

- n th -$,y -ln -s -iie -notergos I n n h

lin I

171



0S- 0 implies Type I.B1

0 < < 2 implies Type I ,
% 0

,. 2 2- implies Type III.
2

2 ~implies Type VI, Type V, or Type IV.

Now if one restricts attention to that part of the (01 ,y) plane

shown in Figure 4, there exists some small number e > 0 such that

2< -i < 2-c implies Type VI (true even when B > 1.8),
2 B

2-c <- < 2+e is implied by Type V,

2+ e < - -  implies Type IV.B1

This completes the necessary background remarks, so that we can

finally procede to the question of interest. To begin, let us consider

what happens when X and X2 are iid, or, to restrict attention to

what is relevant here, when X1 and X2 are such that K2  L 2,

K 3  L3 , and K4 - L4 . In this case, we have

K4+L4  2K4  m -

Y 2 2 2
(K2+L2) 4K 2

18
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(L3+ 3)
2 4K~ ~ 8

3 1~i
(K2+L2) 3 8K 2

If 1  0, this implies = - 0 and sign(A) = sign(y'). If > 0,

this implies -A' - IT

Thus, the Types II, G, and VII, which occur when 0, are

preserved under addition of two iid random variables. The same is

true of Types I , 10, I + , and III, which are characterized by the value

of the ratio since this ratio is preserved under addition of two

iid random variables. The Types VI, V, and IV are "almost" preserved

in the same sense that they are "almost" determined by the ratio -81"

Thus, Type VI random variables for which 3/2 < < 2-e are pre-

served under addition in this sense. The same is true for Type IV

random variables for which 2+c < and 0 < 81 < 1.8. Type V

random variables will almost never be preserved, but the sum of two

iid Type V's for which 0 < 81 < 1.8 will be very close to a Type V

distribution with respect to its first four moments. The second deriva-

tive of the Type V curve is negative close to 81 M 0 and is positive

when 81 is large, so there will be at least one point ( y1,y) on the
,1% 1

curve for which (-, -1)  is also on the Type V curve.

If n iid random variables are added, the 81 and y values

1
for the sum are equl to times the corresponding values for the sum-

mands. It follows that all of the above results hold when n instead

of just two iid random variables are added together. Let us record

this formally as

19
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Theorem 1. Suppose a random variable X is best fitted by a Pearson

curve of Type I, II, III, or VII. If n iid copies of X are

added together, the sum is best fitted by a Pearson curve of the same

type. The same is "almost" true for Pearson curve Types IV, V, and

VI in the sense described above.

When X1 and X2 are not iid, matters become more complicated.

The relationship between the (01,y') and (8',g") pairs of the

summands and the y) pair of the sum is not so easily described

as in the iid case. The key result here will be Theorem 3, although

Theorem 2 will be useful also.

Theorem 2. 8,< max{1,'03 'l, and lyl jmax{Iy'l,jY"l."

Proof. Suppose all < 13'. In terms of the cumulants, this means

2 2
L3  K3

L3- 3'
L2  K2

so that

IL .K3(L 2 3/2

1L31 < IK-3 I('2)
2

Thus,

A (

B1 K3+ )2

(K2+L2)7

(<K 3 1 IL3 1)2

(K2+L2) 3

L2 3/2 2
(1K3 1+1 3 1(z2) )

(K2+L2) 
3

20
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2 312 IL3/2 2

K 3 (K 3L

2K1+L 2 ) 3

< 2 2 -

(F: +L )3/2

3/22

Since x 32is a convex increasing function of x for x > 0,

3/2 3/23/
2j + 2 < (K 2+L 2)

This and the above imply

8~ -max0j'an

The proof of the second assertion is similar.3

Theorem 3. If y' and y" have the same sign (positive, negative,

or 0), then y also has this sign, and

Here, j.jis to be interpreted as for every a c R. If the

sign of y' and y" is not 0, then equality holds if and only if

K 3 L3  and 4 L L4
an -C

21



*Proof. The proof is trivial when sign(y') -sign'yll) -0.

-ippose that y' > 0 and y" > 0. This implies y > 0.

2
Note that 0, (W is never negative. Thus, the assertion

is equivalent to

-< max{7 - -i

Y Y

Let

c -max{74 .i

Then

*(1)<

if and only if

if and only if

2
(K3 +L3 ) ______

(K2+ 2  (K +L)

if and only if

(K4c (%4 +L4 ) (K2+ 2

if and only if

22



()K 2  1~ L 2  /1 <i c (4y'+4y") (K2+L2)

if

(3) ( 3/2 r$-.r + L 3 /2 ro:,)2 <(K 2o!+L 2 ') KK2 1 2 1 21 21 22

if and only if

K 3 'L 3 $'1+2K 3 /2 L 3 / 2 r-I -1 < K3a L 3a' L , 1+ 2V211 2 2 K8L 2 1 L 2 1 KL8 1

if and only if

2 ~ 8 L VO-1 < L K28 + K L'82i 2 1 -22 22 1

if and only if

*1/2 1/2trVT2K L 1, ~< K0
-,2 2 1 1-201

if and only if

(4) 0O<(4Kj LT2 4~

Equation (4) is always true. Following the chain of implications

bs':k up shows equation (1) is always true.

23



1 _/2 . - /2

If 2 i 2 , then we have strict inequality in (4).

Strict inequality in (4) implies strict inequality in all the pre-

Kceding steps. Note that 12V/l = is equivalent to
K 3 L 3 8
K 2 L 1 R, then we get strict inequality in (2) when

we go up from (3) to (2). Strict inequality in (2) implies strict

K4 L4 o al

inequality in (1). Note that -= - is equivalent to Y YK2  L2  T i '

K3  L3
when -=L holds. This shows that the "only if" part of theK2 L2

last assertion.

K L K L
If L 3 and -- .-- both hold, then Kl/2 / L1

K 2 L2 K2 2 2 1 2 1

and 7 = . This implies inequality in (4) and in all the preceding

steps. This finishes the case Y' > 0 and y" > 0. The proof for the

case y' < 0 and y" < 0 is similar. I

It follows from Theorem 3 that if independent random variables

-. are best fitted by Type II Pearson curves, then their sum is also

best fitted by a Type II Pearson curve. The same holds for Type VII,

for the union of Type 10 and Type G, and for the union of Type I and

Type II. These results would have been trivial to prove directly,

however. It is on the types for which y > 0 that Theorem 3 sheds

the most light. For example, if ($j,y') and (B",y") are both in

+ A +
region I+, then (8 1 ,y) may fall only in I+. III, VI, V, IV, and

VII. However, if (B,,y') and (OiY") fall in the Type VI region,

then ( 1 ,y) must be in VI, V, IV, or VII. By using both Theorem 2

24



A A

and Theorem 3, one can conclude that (01 ,y) will be in either IV or

VII when (01,y') and (0 1,Y") are in that part of the IV region for

which 0 < I< 1.8 and 2+C < 13Y

The most interesting application of Theorem 3 is to Type III

random variables. Suppose that X and X both have gamma distri-

butions with support on [0,). Then the densities of X and X2

are Type III Pearson curves, so that (01,Y') and ($ 1 y") fall on
i 3 A A

the line = - . By the first part of Theorem 3, ( 1 ,y) must falla1 2

in III, VI, V, IV, or VII. However, the fact that X1 and X2 are

gamma distributions with right tails implies__ T > 0 and /I1T > 0
1 1

A A

This in turn implies > 0, so that (81,y) will not fall in VII.

Now we can apply the condition for equality in Theorem 3. When X

and X2 are both gamma random variables, the condition for equality

in Theorem 3 is equivalent to the condition that the scale parameters

of X and X be the same. Two gamma random variables with the same

scale parameter are, at least in a limiting sense, sums of iid copies

of the same random variable. (Recall that a gamma random variable with

shape parameter k and scale parameter X can be thought of as a sum

of k independent exponentialmndom variables with parameter X. This

interpretation is useful even when k is not a integer.) Thus, we are

essentially back in the case covered by Theorem 1 when the equality

condition of Theorem 3 holds for gamma random variables. On the other

hand, Theorem 3 implies that Xl+X will have the first four moments

of a Pearson curve of Types VI, V, or IV when X and X have dif-

ferent scale parameters. Thus, the sum of two gamma random variables

with different scale parameters cannot have the first four moments of

a gams random variable.
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It may also be enlightening to look more closely at what can

happen when (l,y') (%I, 7 ) are in I By Figure 4, it

is possible for X1  to have a beta distribution such that

(01,Y') - (1,1). Suppose this holds if X1 "U B(p,q), and that

= 1. Suppose further that X - O(qp). Then (O',y") - (1,1),

but v = -1. Note also that, modulo a location shift, X2  will
12

have the same distribution as -Xl. In this case, we will have

(Y,B 1 ) -(1,0) E VII. Tlus, the sum of two beta random variables

can have the same first four moments as a t distribution. This will

be the case whenever I 1 and X 2  has the same distribution

as -X1.

Now suppose that (01.Y') - (1,I), and that (8[,y") - (0,0).

Thus, X2  will have the same first four moments as a normal distri-

bution. Calculation of 01  and y yields

A i(K 3+L3) 
2  2____

8lin2 2
(K L K3

and(K 2+L2) (2+L2)

A K4+L4  K4

(K2 +L 2 ) 2  (K2 +L 2 ) 2

K2  K
s -0. Since 0 K1 3 and y' 4 ehavesinceL 3  L4  0.K K K 2

2 2

^ 2+L2 K2+L 2

KK
1~ 8 2 2

Now K2  and L2  can be chosen independently of ($I,y') and (0, y
2 2
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This is true because K2  is just the variance of X1. so that K2

can be varied by scale transformations which leave (8,Y') unchanged.

The same holds for L2 of course. Thus, by properly choosing K2

^ K +L
and L 4* 2 2and L can be made equal to any given number in (1,c).

2 2 A

This result and Theorem 2 imply that (y,$1 ) can be made to fall into

+ A

any of I , III, VI, V, and IV in this case. Since 81 and y are

continuous functions of the cumulants of X and X2, it is not hard
^A A

to see that (01,y) can fall into any of I+, III, VI, V, and IV even

when ($j,y') and (8 ,Y') are in I+  and , has the same sign

as

Interest has been expressed in the fitting of Pearson curves to

sums of independent chi random variables. Results contained in Elandt

(1961) are helpful here. The Elandt paper gives formulas for the

moments of noncentral chi random variables. It also contains a diagram

(Figure 1, p. 555) showing how the (aI,82) pair for a noncentral chi

moves through the (01,a2) plane as the noncentrality parameter changes.

Comparison of this diagram with Figure 1 on page 13 of this paper shows

that a chi random variable is always best fitted by a Type I Pearson

curve. By Theorem 1, any sum of finitely many iid chi random variables

is also best fitted by a Type I Pearson curve. The question of whether

this is true for nonidentically distributed summails now arises. The

following shows that the best fitting Pearson curve for the sum of a

central chi random variable and an independent noncentral chi random

variable can be of Type I, III, IV, V, or VI.

Let X1 be a central chi random variable arising from taking

the absolute value of a N(0,1). Let X2 be a N(0,1) random

variable independent of X1 . It will now be shown that XI+X2  has

the first four moments of a Type IV Pearson curve.
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It is easy to find the first four cumulants K1 ,K K and K4

of X from the first row of Table 1 in Elandt (1961). The calcula-

tions imply

K 1 0.7979

K = 0.36342

K 3 - 0.21804

K 4 - 0.11473

The first four cumulants of X2are of course

L -0
1

L- 1.0

L4 0

AA 2
If we again use 1 and 2 for the (skewness) and kurtosis

of X1+X2, we get

22
81 - ( 3 3  - (0.21804)2 .087
01 (K 2+ 2) 3 (1.3634) 3 0017

and

A2n3 K4+L 4  0.1174

A (K +L 2  (1.3634 )2-3067

-loy3- 0.06174. Thus,- 3.290. It is easy to see

from Figure 3 that (O1il) £ IV.

Since the second, third, and fourth cumulants of a chi arising

from N(ij,1) approach those of a normal N(0,1) as v~ *~ the

continuity of Riand y^ as functions of the cumulants implies that

the sam of the central chi IN(0,l)1 and the noncentral chi IN(pi,1)I

28
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wi~ll have (B1,Y) in IV for p sufficiently large. As p varies

from 0 to -, the (01,y) pair will trace out a continuous curve

in the (01,y) plane which starts in the Type I region and ends in

the Type IV region. By continuity and the fact that Rl is positive

everywhere along this curve, the curve must pass through the regions

for Types I, III, VI, V, and IV. Calculations using moments for

IN(3,1)I obtained from the last row of Table 1 in Elandt (1961) show

that ( is still in I+ when V = 3.
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